Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Oct;25(13):1623-9.
doi: 10.1002/jcc.20089.

Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson-Boltzmann models

Affiliations
Comparative Study

Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson-Boltzmann models

Jason Wagoner et al. J Comput Chem. 2004 Oct.

Erratum in

  • J Comput Chem. 2004 Nov 15;25(14):1801
  • J Comput Chem. 2005 Jun;26(8):863

Abstract

Continuum electrostatics methods have become increasingly popular due to their ability to provide approximate descriptions of solvation energies and forces without expensive sampling required by explicit solvent models. In particular, the Poisson-Boltzmann equation (PBE) provides electrostatic potentials, solvation energies, and forces by modeling the solvent as a featureless, dielectric material, and the mobile ions as a continuous distribution of charge. Polar solvation forces and energies obtained from the PBE are often supplemented with simple solvent-accessible surface area (SASA) models of nonpolar solvation. Given the recent development of methods that enable the use of PBE and SASA forces in molecular dynamics simulations, it is important to determine the ability of these implicit solvent models to accurately reproduce the solvation forces of more detailed explicit solvent simulations. In this article, we compare PBE and SASA solvation forces with explicit solvent forces for several snapshots from eight trajectories of static conformations of intestinal fatty acid binding protein. The results from this comparison show that current implementations of the PBE are capable of generating polar solvation forces that correlate well with explicit solvent forces but systematically overestimate the magnitude of the interaction. However, SASA-based nonpolar forces are found to have no significant correlation with nonpolar explicit solvent forces. Nevertheless, due to the small magnitude of the nonpolar forces in the current system, a good correlation is still obtained for total solvation forces. The good correlation of implicit solvent forces with more detailed explicit solvent models is encouraging and implies that the systematic errors identified in these models could be corrected by appropriate parameterization of the force fields.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources