Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jun:1024:86-101.
doi: 10.1196/annals.1321.007.

Modulation of glucocorticoid receptor function via phosphorylation

Affiliations
Review

Modulation of glucocorticoid receptor function via phosphorylation

Naima Ismaili et al. Ann N Y Acad Sci. 2004 Jun.

Abstract

The glucocorticoid receptor (GR) is phosphorylated at multiple serine residues in a hormone-dependent manner. It has been suggested that GR phosphorylation affects turnover, subcellular trafficking, or the transcriptional regulatory functions of the receptor, yet the contribution of individual GR phosphorylation sites to the modulation of GR activity remains enigmatic. This review critically evaluates the literature on GR phosphorylation and presents more recent work on the mechanism of GR phosphorylation from studies using antibodies that recognize GR only when it is phosphorylated. In addition, we present support for the notion that GR phosphorylation modifies protein-protein interactions, which can stabilize the hypophosphorylated form of the receptor in the absence of ligand, as well as facilitate transcriptional activation by the hyperphosphorylation of GR via cofactor recruitment upon ligand binding. Finally, we propose that GR phosphorylation also participates in the nongenomic activation of cytoplasmic signaling pathways evoked by GR. Thus, GR phosphorylation is a versatile mechanism for modulating and integrating multiple receptor functions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources