Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 17;279(38):40130-6.
doi: 10.1074/jbc.M405518200. Epub 2004 Jul 19.

A single catalytically active subunit in the multimeric Sulfolobus shibatae CCA-adding enzyme can carry out all three steps of CCA addition

Affiliations
Free article

A single catalytically active subunit in the multimeric Sulfolobus shibatae CCA-adding enzyme can carry out all three steps of CCA addition

HyunDae D Cho et al. J Biol Chem. .
Free article

Abstract

The CCA-adding enzyme ATP(CTP):tRNA nucleotidyltransferase builds and repairs the 3'-terminal CCA sequence of tRNA. Although this unusual RNA polymerase has no nucleic acid template, it can construct the CCA sequence one nucleotide at a time using CTP and ATP as substrates. We found previously that tRNA does not translocate along the enzyme during CCA addition (Yue, D., Weiner, A. M., and Maizels, N. (1998) J. Biol. Chem. 273, 29693-29700) and that a single nucleotidyltransferase motif adds all three nucleotides (Shi, P.-Y., Maizels, N., and Weiner, A. M. (1998) EMBO J. 17, 3197-3206). Intriguingly, the CCA-adding enzyme from the archaeon Sulfolobus shibatae is a homodimer that forms a tetramer upon binding two tRNAs. We therefore asked whether the active form of the S. shibatae enzyme might have two quasi-equivalent active sites, one adding CTP and the other ATP. Using an intersubunit complementation approach, we demonstrate that the dimer is active and that a single catalytically active subunit can carry out all three steps of CCA addition. We also locate one UV light-induced tRNA cross-link on the enzyme structure and provide evidence suggesting the location of another. Our data rule out shuttling models in which the 3'-end of the tRNA shuttles from one quasi-equivalent active site to another, demonstrate that tRNA-induced tetramerization is not required for CCA addition, and support a role for the tail domain of the enzyme in tRNA binding.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources