Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan 22;120(4):2034-41.
doi: 10.1063/1.1636454.

Polymers confined between two parallel plane walls

Affiliations

Polymers confined between two parallel plane walls

Hsiao-Ping Hsu et al. J Chem Phys. .

Abstract

Single three-dimensional polymers confined to a slab, i.e., to the region between two parallel plane walls, are studied by Monte Carlo simulations. They are described by N-step walks on a simple cubic lattice confined to the region 1< or = z < or = D. The simulations cover both regions D<<RF and D>>RF (where RF approximately Nnu is the Flory radius, with nu approximately 0.587), as well as the cross-over region in between. Chain lengths are up to N=80 000, slab widths up to D=120. In order to test the analysis program and to check for finite size corrections, we actually studied three different models: (a) ordinary random walks (mimicking Theta polymers); (b) self-avoiding walks; and (c) Domb-Joyce walks with the self-repulsion tuned to the point where finite size corrections for free (unrestricted) chains are minimal. For the simulations we employ the pruned-enriched-Rosenbluth method with Markovian anticipation. In addition to the partition sum (which gives us a direct estimate of the forces exerted onto the walls), we measure the density profiles of monomers and of end points transverse to the slab, and the radial extent of the chain parallel to the walls. All scaling laws and some of the universal amplitude ratios are compared to theoretical predictions.

PubMed Disclaimer

LinkOut - more resources