Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug;183(2):391-5.
doi: 10.2214/ajr.183.2.1830391.

The catheter-driven MRI scanner: a new approach to intravascular catheter tracking and imaging-parameter adjustment for interventional MRI

Affiliations

The catheter-driven MRI scanner: a new approach to intravascular catheter tracking and imaging-parameter adjustment for interventional MRI

Frank K Wacker et al. AJR Am J Roentgenol. 2004 Aug.

Abstract

Objective: Our aim was to test the feasibility of a hands-free approach to MRI that allows the interventionalist to track an angiographic catheter in real time throughout the procedure and to automatically change imaging parameters by catheter manipulation.

Materials and methods: A tracking method that is based on an active device localization was implemented on a 1.5-T MRI scanner. The system determines the current position and orientation of a catheter in 3D space in an endless feedback loop. Automatic scanning plane-adjustment procedures written in the software of the MRI system ensure image acquisition at the location of the catheter tip. The system calculates the device velocity to automatically adjust parameters such as field of view (FOV) and resolution. To evaluate the feasibility and performance in vivo and ex vivo, we performed experiments in two vessel phantoms and on six pigs.

Results: The system collected the tracking data within 40 msec; an additional 10-20 msec was then required to perform the localization and velocity calculations and to update the image parameters. The system could localize a motionless catheter in the aorta in 100% and a moving catheter in 98% of measured attempts. The system responded in real time to changes in device velocity by dynamically adjusting spatial resolution and FOV in both phantom and porcine trials. Using this technique, we successfully catheterized the renal artery in two pigs.

Conclusion: Active tracking, combined with automatic scanning plane and imaging parameter adjustment, provides an intuitive MRI scanner interface for the guidance of the vascular procedure.

PubMed Disclaimer

LinkOut - more resources