Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep 15;267(26):18336-41.

Resistance of the melibiose carrier to inhibition by the phosphotransferase system due to substitutions of amino acid residues in the carrier of Salmonella typhimurium

Affiliations
  • PMID: 1526973
Free article

Resistance of the melibiose carrier to inhibition by the phosphotransferase system due to substitutions of amino acid residues in the carrier of Salmonella typhimurium

M Kuroda et al. J Biol Chem. .
Free article

Abstract

The melibiose carrier of Salmonella typhimurium is under the control of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). We isolated mutants of the melibiose carrier that showed resistance to inhibition via the PTS. Growth of the mutants on melibiose was not inhibited by 2-deoxyglucose, a non-metabolizable substrate of the PTS, although growth of the parent strain was inhibited. Transport activity of the melibiose carrier in the mutants was fairly resistant to inhibition by 2-deoxyglucose, although the activity in the parent was sensitive to inhibition. We cloned the mutated melB gene that encodes the melibiose carrier, determined the nucleotide sequences, and identified replaced nucleotides. The mutations resulted in substitutions of Asp-438 with Tyr, Arg-441 with Ser, or Ile-445 with Asn. All of these residues are in the COOH-terminal region of the carrier. The secondary structure of this region is predicted to be an alpha-helix, and the mutated residues were on the same side of the helix. This region showed sequence similarity to a region of the MalK protein, in which substitution of amino acid residues also resulted in PTS-resistant mutants. Thus the COOH-terminal portion of the melibiose carrier is important for the interaction of dephosphorylated IIIGlc, which is an entity causing reversible inactivation of the carrier.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources