Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep 25;267(27):19198-203.

The ATP-Mg/Pi carrier of rat liver mitochondria catalyzes a divalent electroneutral exchange

Affiliations
  • PMID: 1527042
Free article

The ATP-Mg/Pi carrier of rat liver mitochondria catalyzes a divalent electroneutral exchange

J L Joyal et al. J Biol Chem. .
Free article

Abstract

Net transport of ATP-Mg or ADP in exchange for phosphate in isolated rat liver mitochondria has been shown to be an electroneutral process mediated by the ATP-Mg/Pi carrier. We compared the steady state distribution ratios of phosphate, ATP-Mg, and ADP at a pH of 7.4 to determine whether the divalent or monovalent form of these anions is the transported substrate. The log of the divalent ATP-Mg distribution ratio (in/out) approached the log of the divalent phosphate distribution ratio (approximately 0.85), which was approximately twice the value of the delta pH (approximately 0.40) across the inner mitochondrial membrane. This steady state relationship held under several different conditions, e.g. when the medium ATP concentration was varied or if the phosphate gradient was modified by partial uncoupling with the proton ionophore, carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Unidirectional ADP efflux in exchange for external ADP or ATP-Mg was stimulated by an increase in matrix H+. The log of the trivalent ADP distribution ratio (approximately 1.20) approached 3 times the value of delta pH. All these data are consistent with the model of an electroneutral exchange of divalent phosphate (HPO2-4) for divalent ATP-Mg (ATP-Mg2-) or for divalent protonated ADP (HADP2-). We conclude that this transport mechanism accounts for the adenine nucleotide concentration gradient that normally exists between the matrix and external medium.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources