Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;26(4):349-57.
doi: 10.1016/j.biomaterials.2004.02.041.

Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers

Affiliations

Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers

Alejandro Sosnik et al. Biomaterials. 2005 Feb.

Abstract

Aiming at developing new reverse thermo-responsive polymers, poly(ethylene oxide)-poly(propylene oxide) multiblock copolymers were synthesized by covalently binding the two components using carbonyl chloride and diacyl chlorides as the coupling molecules. The appropriate selection of the various components allowed the generation of systems displaying much enhanced rheological properties. For example, 15 wt% aqueous solutions of an alternating poly(ether-carbonate) comprising PEO6000 and PPO3000 segments, achieved a viscosity of 140,000 Pas, while the commercially available Pluronic F127 displayed 5,000 Pas only. Furthermore, the structure of the chain extender played a key role in determining the sol-gel transition. While poly(ether-ester)s containing therephtaloyl (para) and isophtaloyl (metha) coupling units failed to gel at any concentration, a 15 wt% aqueous solution of the polymer chain-extended with phtaloyl chloride (ortho) gelled at 43 degrees C. The water solutions were also studied by dynamic light scattering and a clear influence of the PEO/PPO ratio on the aggregate size was observed. By incorporating short aliphatic oligoesters into the backbone, prior to the chain extension stage, reverse thermal gelation-displaying biodegradable poly(ether-ester-carbonate)s, were generated.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources