Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;26(5):529-43.
doi: 10.1016/j.biomaterials.2004.02.055.

Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle-urothelial cell interactions

Affiliations

Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle-urothelial cell interactions

Allison L Brown et al. Biomaterials. 2005 Feb.

Abstract

The objective of this study was to evaluate the ability of bladder acellular matrix (BAM) to support the individual and combined growth of primary porcine bladder smooth muscle (SMC) and urothelial (UEC) cells. An in vitro co-culture system was devised to evaluate the effect of UEC on (i) SMC-mediated contraction of BAM discs, and (ii) SMC invasiveness into BAM. Cells were seeded onto BAM discs under 4 different culture conditions. Constructs were incubated for 1, 7, 14 and 28 days. Samples were then harvested for evaluation of matrix contraction. Immunohistochemistry (IHC) was utilized to examine cellular organization within the samples and conditioned media supernatants analyzed for net gelatinase activity. BAM contraction was significantly increased with co-culture. The same side co-culture configuration lead to a greater reduction in surface area than opposite side co-culture. IHC revealed enhanced SMC infiltration into BAM when co-culture was utilized. A significant increase in net gelatinase activity was also observed with the co-culture configuration. Enhanced infiltration and contractile ability of bladder SMCs with UEC co-culture may, in part, be due to an increase in gelatinase activity. The influence of bladder UECs on SMC behaviour in vitro indicates that BAM may contain some key inductive factors that serve to promote important bladder cell-cell and cell-matrix interactions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources