Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;58(3):351-60.
doi: 10.1016/j.mimet.2004.04.016.

A simple screening protocol for the identification of quorum signal antagonists

Affiliations

A simple screening protocol for the identification of quorum signal antagonists

Robert J C McLean et al. J Microbiol Methods. 2004 Sep.

Abstract

Quorum sensing (QS) is a mechanism by which diverse microorganisms can control specific processes in response to population density. A relatively well-known form of QS among Proteobacteria involves production and subsequent response to acylated homoserine lactones (AHLs). Quorum sensing inhibition (QSI), targeting AHL-dependent signaling, has been reported as a strategy for the control of biofilm formation used by several marine organisms. We developed a simple soft agar overlay protocol, based on pigmentation inhibition, to rapidly screen for the presence of potential QSI by bacteria and plants. For bacterial screens, test organisms are first streaked onto their appropriate media and incubated overnight. For plant screens, the plant material (leaf, stem, flower, etc.) is placed onto LB agar. The bacterial growth or plant samples are then covered with an overlay of LB soft agar containing an inoculum of either Pseudomonas aureofaciens 30-84 or Chromobacterium violaceum ATCC 12472 (indicator cultures) and then incubated overnight. These indicator bacteria regulate pigment production by N-hexanoyl-HSL (C6-HSL) QS and are readily inhibited by AHL analogues and other antagonists. QSI is indicated by the lack of pigment production of the indicator culture in the vicinity of the test sample. Growth inhibition of the indicator culture indicates possible antibiotic production. Two different biosensor organisms based on derivatives of Agrobacterium tumefaciens and C. violaceum, capable of detecting a range of AHLs were used to determine whether QSI is due to the production of interfering AHLs competing with the C6-HSL regulation of C. violaceum and P. aureofaciens pigment production. This simple protocol will facilitate the screening of multiple organisms for the production of potential antifouling compounds.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources