Gene selection and classification from microarray data using kernel machine
- PMID: 15280023
- DOI: 10.1016/j.febslet.2004.05.087
Gene selection and classification from microarray data using kernel machine
Abstract
The discrimination of cancer patients (including subtypes) based on gene expression data is a critical problem with clinical ramifications. Central to solving this problem is the issue of how to extract the most relevant genes from the several thousand genes on a typical microarray. Here, we propose a methodology that can effectively select an informative subset of genes and classify the subtypes (or patients) of disease using the selected genes. We employ a kernel machine, kernel Fisher discriminant analysis (KFDA), for discrimination and use the derivatives of the kernel function to perform gene selection. Using a modified form of KFDA in the minimum squared error (MSE) sense and the gradients of the kernel functions, we construct an effective gene selection criterion. We assess the performance of the proposed methodology by applying it to three gene expression datasets: leukemia dataset, breast cancer dataset and colon cancer dataset. Using a few informative genes, the proposed method accurately and reliably classified cancer subtypes (or patients). Also, through a comparison study, we verify the reliability of the gene selection and discrimination results.
Similar articles
-
Variable selection using probability density function similarity for support vector machine classification of high-dimensional microarray data.Talanta. 2009 Jul 15;79(2):260-7. doi: 10.1016/j.talanta.2009.03.044. Epub 2009 Mar 31. Talanta. 2009. PMID: 19559875
-
A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.Artif Intell Med. 2007 Oct;41(2):161-75. doi: 10.1016/j.artmed.2007.07.008. Epub 2007 Sep 11. Artif Intell Med. 2007. PMID: 17851055
-
Tumor classification ranking from microarray data.BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S21. doi: 10.1186/1471-2164-9-S2-S21. BMC Genomics. 2008. PMID: 18831787 Free PMC article.
-
Statistical framework for gene expression data analysis.Methods Mol Biol. 2007;377:111-30. doi: 10.1007/978-1-59745-390-5_6. Methods Mol Biol. 2007. PMID: 17634612 Review.
-
Advances in metaheuristics for gene selection and classification of microarray data.Brief Bioinform. 2010 Jan;11(1):127-41. doi: 10.1093/bib/bbp035. Epub 2009 Sep 29. Brief Bioinform. 2010. PMID: 19789265 Review.
Cited by
-
A weighted average difference method for detecting differentially expressed genes from microarray data.Algorithms Mol Biol. 2008 Jun 26;3:8. doi: 10.1186/1748-7188-3-8. Algorithms Mol Biol. 2008. PMID: 18578891 Free PMC article.
-
Classification of COVID-19 by using supervised optimized machine learning technique.Mater Today Proc. 2022;56:2058-2062. doi: 10.1016/j.matpr.2021.11.388. Epub 2021 Nov 29. Mater Today Proc. 2022. PMID: 34868886 Free PMC article.
-
Molecular phenotyping of a UK population: defining the human serum metabolome.Metabolomics. 2015;11(1):9-26. doi: 10.1007/s11306-014-0707-1. Epub 2014 Jul 25. Metabolomics. 2015. PMID: 25598764 Free PMC article.
-
Classification of Microarray Data Using Kernel Fuzzy Inference System.Int Sch Res Notices. 2014 Aug 21;2014:769159. doi: 10.1155/2014/769159. eCollection 2014. Int Sch Res Notices. 2014. PMID: 27433543 Free PMC article.
-
Gene selection with multiple ordering criteria.BMC Bioinformatics. 2007 Mar 5;8:74. doi: 10.1186/1471-2105-8-74. BMC Bioinformatics. 2007. PMID: 17338815 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical