Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Aug;63(1):51-60.
doi: 10.1016/j.jri.2004.01.010.

The molecular signature of polycystic ovary syndrome (PCOS) theca cells defined by gene expression profiling

Affiliations
Comparative Study

The molecular signature of polycystic ovary syndrome (PCOS) theca cells defined by gene expression profiling

Jennifer R Wood et al. J Reprod Immunol. 2004 Aug.

Abstract

Polycystic ovary syndrome (PCOS) is characterized by increased ovarian androgen secretion, anovulatory infertility due to arrested folliculogenesis, and is frequently found in association with insulin resistance and obesity. Characterization of PCOS theca cells demonstrated that elevated expression of the steroidogenic enzymes 17alpha hydroxylase/17,20 lyase (CYP17) and P450 side chain cleavage enzyme (CYP11A1) play a role in increased androgen production by 3beta-hydroxysteroid dehydrogenase in the PCOS theca cell. However, the gene networks and signal transduction pathways which cause the altered expansion of the steroid enzymes remain to be determined. In order to identify these gene networks and/or signaling pathways, we carried out global gene expression profiling of normal and PCOS theca cells using subtractive suppressive hybridization and oligonucleotide microarray analysis. These analyses demonstrated that approximately 2% of genes expressed in the theca cell exhibit altered mRNA abundance in PCOS. Characterization of these genes revealed that retinoic acid synthesis and Wnt signal transduction are altered in the PCOS theca cell. In addition, the transcription factor GATA6, which regulates the promoter activity of CYP17 and CYP11A, was increased in the PCOS compared to normal theca cells. Thus, global gene expression profiling has identified potential pathways which may determine the PCOS theca cell phenotype.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources