Measures of similarity in models of categorization
- PMID: 15285122
- DOI: 10.3758/bf03195832
Measures of similarity in models of categorization
Abstract
This paper concerns the use of similarities based on geometric distance in models of categorization. Two problematic implications of such similarities are outlined. First, in a comparison between two stimuli, geometric distance implies that matching features are not taken into account. Second, missing features are assumed not to exist. Only nonmatching features enter into calculations of similarity. A new model is constructed that is based on the ALCOVE model (Kruschke, 1992), but it uses a feature-matching similarity measure (see, e.g., Tversky, 1977) rather than a geometric one. It is an on-line model in the sense that both dimensions and exemplars are constructed during the categorization process. The model accounts better than ALCOVE does for data with missing features (Experiments 1 and 2) and at least as well as ALCOVE for a data set without missing features (Nosofsky, Kruschke, & McKinley, 1992). This suggests that, at least for some stimulus materials, similarity in categorization is more akin to a feature-matching procedure than to geometric distance calculation.
Comment in
-
Informed inferences of unknown feature values in categorization.Mem Cognit. 2011 May;39(4):666-74. doi: 10.3758/s13421-010-0044-1. Mem Cognit. 2011. PMID: 21264594
Similar articles
-
Generalization and similarity in exemplar models of categorization: insights from machine learning.Psychon Bull Rev. 2008 Apr;15(2):256-71. doi: 10.3758/pbr.15.2.256. Psychon Bull Rev. 2008. PMID: 18488638
-
Superior single dimension relative to "exclusive or" categorization performance by a patient with category-specific visual agnosia: empirical data and an ALCOVE simulation.Brain Cogn. 2000 Jun-Aug;43(1-3):152-8. Brain Cogn. 2000. PMID: 10857684
-
Rule-based extrapolation in perceptual categorization.Psychon Bull Rev. 2002 Mar;9(1):160-8. doi: 10.3758/bf03196273. Psychon Bull Rev. 2002. PMID: 12026949
-
Representation is representation of similarities.Behav Brain Sci. 1998 Aug;21(4):449-67; discussion 467-98. doi: 10.1017/s0140525x98001253. Behav Brain Sci. 1998. PMID: 10097019 Review.
-
Categorization of visual stimuli in the honeybee Apis mellifera.Anim Cogn. 2006 Oct;9(4):257-70. doi: 10.1007/s10071-006-0032-9. Epub 2006 Aug 15. Anim Cogn. 2006. PMID: 16909238 Review.
Cited by
-
Recognizing distinctive faces: a hybrid-similarity exemplar model account.Mem Cognit. 2006 Jun;34(4):877-89. doi: 10.3758/bf03193434. Mem Cognit. 2006. PMID: 17063918
-
Improved Statistical Methods are Needed to Advance Personalized Medicine.Open Transl Med J. 2009 Jan 1;1:16-20. doi: 10.2174/1876399500901010016. Open Transl Med J. 2009. PMID: 20676226 Free PMC article.
-
Informed inferences of unknown feature values in categorization.Mem Cognit. 2011 May;39(4):666-74. doi: 10.3758/s13421-010-0044-1. Mem Cognit. 2011. PMID: 21264594
-
Generalization and similarity in exemplar models of categorization: insights from machine learning.Psychon Bull Rev. 2008 Apr;15(2):256-71. doi: 10.3758/pbr.15.2.256. Psychon Bull Rev. 2008. PMID: 18488638
-
Model-guided search for optimal natural-science-category training exemplars: A work in progress.Psychon Bull Rev. 2019 Feb;26(1):48-76. doi: 10.3758/s13423-018-1508-8. Psychon Bull Rev. 2019. PMID: 29987765 Review.