Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Nov;55(407):2385-94.
doi: 10.1093/jxb/erh219. Epub 2004 Jul 30.

Grain yields with limited water

Affiliations
Review

Grain yields with limited water

J S Boyer et al. J Exp Bot. 2004 Nov.

Abstract

Plant reproduction is sensitive to water deficits, especially during the early phases when development may cease irreversibly even though the parent remains alive. Grain numbers decrease because of several developmental changes, especially ovary abortion in maize (Zea mays L.) or pollen sterility in small grains. In maize, the water deficits inhibit photosynthesis, and the decrease in photosynthate flux to the developing organs appears to trigger abortion. Abscisic acid also increases in the parent and may play a role, perhaps by inhibiting photosynthesis through stomatal closure. Recent work indicates that invertase activity is inhibited and starch is diminished in the ovaries or affected pollen. Also, sucrose fed to the stems rescues many of the ovaries otherwise destined to abort. The feeding restores some of the ovary starch and invertase activity. These studies implicate invertase as a limiting enzyme step for grain yields during a water deficit, and transcript profiling with microarrays has identified genes that are up- or down-regulated during water deficit-induced abortion in maize. However, profiling studies to date have not reported changes in invertase or starch synthesizing genes in water-deficient ovaries, perhaps because there were too few sampling times. The ovary rescue with sucrose feeding indicates either that the changes identified in the profiling are of no consequence for inhibiting ovary development or that gene expression reverts to control levels when the sugar stream recovers. Careful documentation of tissue- and developmentally specific gene expression are needed to resolve these issues and link metabolic changes to the decreased sugar flux affecting the reproductive organs.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources