Localization of the voltage-sensor toxin receptor on KvAP
- PMID: 15287735
- DOI: 10.1021/bi049463y
Localization of the voltage-sensor toxin receptor on KvAP
Abstract
A variety of venomous animals produce small protein toxins that impair the function of voltage-dependent cation channels by affecting the motions of the voltage-sensor domains and altering the energetics of the opening of the channel. In this study, we investigate the location of the receptor for tarantula venom voltage-sensor toxins on the voltage-dependent K+ channel from Aeropyrum pernix (KvAP), an archeabacterial channel that is functionally inhibited by members of this toxin family. We show that it is possible to purify the same set of toxins from venom of the tarantula Grammostola spatulata using either the purified KvAP voltage-sensor domain or the full-length KvAP channel. The equivalence of toxin retention profiles for the two channel proteins implies that the tarantula voltage-sensor toxin receptor resides exclusively on the voltage-sensor domain and that the pore is not required for the toxin-channel interaction. We have identified and characterized the functional properties of a subset of the tarantula toxins that bind to the KvAP voltage-sensor domain. Some of these toxins, VSTX1 and GSMTX4, have been previously isolated, while others, VSTX2 and VSTX3, are new members of the tarantula voltage-sensor toxin family. Some but not all toxins that bind to the voltage-sensor domain affect voltage-dependent gating of KvAP channels in lipid membranes.
Similar articles
-
Structural basis of binding and inhibition of novel tarantula toxins in mammalian voltage-dependent potassium channels.Chem Res Toxicol. 2003 Oct;16(10):1217-25. doi: 10.1021/tx0341097. Chem Res Toxicol. 2003. PMID: 14565763
-
A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom.Nature. 2004 Jul 8;430(6996):232-5. doi: 10.1038/nature02632. Nature. 2004. PMID: 15241419
-
X-ray structure of a voltage-dependent K+ channel.Nature. 2003 May 1;423(6935):33-41. doi: 10.1038/nature01580. Nature. 2003. PMID: 12721618
-
The voltage-sensor structure in a voltage-gated channel.Trends Biochem Sci. 2005 Apr;30(4):166-8. doi: 10.1016/j.tibs.2005.02.006. Trends Biochem Sci. 2005. PMID: 15817390 Review.
-
Toxin modulators and blockers of hERG K(+) channels.Toxicon. 2012 Sep 15;60(4):492-501. doi: 10.1016/j.toxicon.2012.03.024. Epub 2012 Apr 5. Toxicon. 2012. PMID: 22497787 Review.
Cited by
-
Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1.Nat Commun. 2012 Jul 3;3:936. doi: 10.1038/ncomms1917. Nat Commun. 2012. PMID: 22760635
-
Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels.Sci Rep. 2016 Sep 28;6:34333. doi: 10.1038/srep34333. Sci Rep. 2016. PMID: 27677715 Free PMC article.
-
SGTx1, a Kv channel gating-modifier toxin, binds to the interfacial region of lipid bilayers.Biophys J. 2007 Jan 1;92(1):L07-9. doi: 10.1529/biophysj.106.098681. Epub 2006 Oct 27. Biophys J. 2007. PMID: 17071657 Free PMC article.
-
Down-state model of the voltage-sensing domain of a potassium channel.Biophys J. 2010 Jun 16;98(12):2857-66. doi: 10.1016/j.bpj.2010.03.031. Biophys J. 2010. PMID: 20550898 Free PMC article.
-
The neuropeptide GsMTx4 inhibits a mechanosensitive BK channel through the voltage-dependent modification specific to mechano-gating.J Biol Chem. 2019 Aug 2;294(31):11892-11909. doi: 10.1074/jbc.RA118.005511. Epub 2019 Jun 14. J Biol Chem. 2019. PMID: 31201274 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources