Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Aug 2;496(1-3):189-95.
doi: 10.1016/j.ejphar.2004.05.047.

In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp

Affiliations
Comparative Study

In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp

Junho Park et al. Eur J Pharmacol. .

Abstract

Honokiol and magnolol, two major phenolic constituents of Magnolia sp., have been known to exhibit antibacterial activities. However, until now, their antibacterial activity against Propionibacterium sp. has not been reported. To this end, the antibacterial activities of honokiol and magnolol were detected using the disk diffusion method and a two-fold serial dilution assay. Honokiol and magnolol showed strong antibacterial activities against both Propionibacterium acnes and Propionibacterium granulosum, which are acne-causing bacteria. The minimum inhibitory concentrations (MIC) of honokiol and magnolol was 3-4 microg/ml (11.3-15 microM) and 9 microg/ml (33.8 microM), respectively. In addition, the killing curve analysis showed that magnolol and honokiol killed P. acnes rapidly, with 10(5) organisms/ml eliminated within 10 min of treatment with either 45 microg (169.2 microM) of magnolol or 20 microg (75.2 microM) of honokiol per ml. The cytotoxic effect of honokiol and magnolol was determined by a colorimetric (3-(4,5-dimetyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) (MTT) assay using two animal cell lines, human normal fibroblasts and HaCaT. In this experiment, magnolol exhibited lower cytotoxic effects than honokiol at the same concentration, but they showed similar cytotoxicity when triclosan was employed as an acne-mitigating agent. In addition, they reduced secretion of interleukin-8 and tumor necrosis factor alpha (TNF-alpha) induced by P. acnes in THP-1 cells indicating the anti-inflammatory effects of them. When applied topically, neither phenolic compound induced any adverse reactions in a human skin primary irritation test. Therefore, based on these results, we suggest the possibility that magnolol and honokiol may be considered as attractive acne-mitigating candidates for topical application.

PubMed Disclaimer

Publication types

MeSH terms