Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug;39(8):1145-54.
doi: 10.1016/j.exger.2004.04.009.

Krebs cycle enzymes from livers of old mice are differentially regulated by caloric restriction

Affiliations

Krebs cycle enzymes from livers of old mice are differentially regulated by caloric restriction

Kevork Hagopian et al. Exp Gerontol. 2004 Aug.

Abstract

Krebs cycle enzyme activities and levels of five metabolites were determined from livers of old mice (30 months) maintained either on control or on long-term caloric restriction (CR) diets (28 months). In CR mice, the cycle was divided into two major blocks, the first containing citrate synthase, aconitase and NAD-dependent isocitrate dehydrogenase which showed decreased activities, while the second block, containing the remaining enzymes, displayed increased activity (except for fumarase, which was unchanged). CR also resulted in decreased levels of citrate, glutamate and alpha-ketoglutarate, increased levels of malate, and unchanged levels of aspartate. The alpha-ketoglutarate/glutamate and malate/alpha-ketoglutarate ratios were higher in CR, in parallel with previously reported increases with CR in pyruvate carboxylase activity and glucagon levels, respectively. The results indicate that long-term CR induces a differential regulation of Krebs cycle in old mice and this regulation may be the result of changes in gene expression levels, as well as a complex interplay between enzymes, hormones and other effectors. Truncation of Krebs cycle by CR may be an important adaptation to utilize available substrates for the gluconeogenesis necessary to sustain glycolytic tissues, such as brain.

PubMed Disclaimer

Publication types