Nonlinear V1 responses to natural scenes revealed by neural network analysis
- PMID: 15288891
- DOI: 10.1016/j.neunet.2004.03.008
Nonlinear V1 responses to natural scenes revealed by neural network analysis
Abstract
A key goal in the study of visual processing is to obtain a comprehensive description of the relationship between visual stimuli and neuronal responses. One way to guide the search for models is to use a general nonparametric regression algorithm, such as a neural network. We have developed a multilayer feed-forward network algorithm that can be used to characterize nonlinear stimulus-response mapping functions of neurons in primary visual cortex (area V1) using natural image stimuli. The network is capable of extracting several known V1 response properties such as: orientation and spatial frequency tuning, the spatial phase invariance of complex cells, and direction selectivity. We present details of a method for training networks and visualizing their properties. We also compare how well conventional explicit models and those developed using neural networks can predict novel responses to natural scenes.
Similar articles
-
Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.Neuroscience. 2007 Nov 23;149(4):962-75. doi: 10.1016/j.neuroscience.2007.08.001. Epub 2007 Aug 9. Neuroscience. 2007. PMID: 17945429
-
Laminar and orientation-dependent characteristics of spatial nonlinearities: implications for the computational architecture of visual cortex.J Neurophysiol. 2009 Dec;102(6):3414-32. doi: 10.1152/jn.00086.2009. Epub 2009 Oct 7. J Neurophysiol. 2009. PMID: 19812295 Free PMC article.
-
Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity.Eur J Neurosci. 2010 Mar;31(6):1043-62. doi: 10.1111/j.1460-9568.2010.07118.x. Epub 2010 Mar 3. Eur J Neurosci. 2010. PMID: 20377618
-
The dynamics of visual responses in the primary visual cortex.Prog Brain Res. 2007;165:21-32. doi: 10.1016/S0079-6123(06)65003-6. Prog Brain Res. 2007. PMID: 17925238 Review.
-
Bottom-up and top-down dynamics in visual cortex.Prog Brain Res. 2005;149:65-81. doi: 10.1016/S0079-6123(05)49006-8. Prog Brain Res. 2005. PMID: 16226577 Review.
Cited by
-
Predicting Single Neuron Responses of the Primary Visual Cortex with Deep Learning Model.Adv Sci (Weinh). 2024 Apr;11(15):e2305626. doi: 10.1002/advs.202305626. Epub 2024 Feb 13. Adv Sci (Weinh). 2024. PMID: 38350735 Free PMC article.
-
Measuring the Performance of Neural Models.Front Comput Neurosci. 2016 Feb 10;10:10. doi: 10.3389/fncom.2016.00010. eCollection 2016. Front Comput Neurosci. 2016. PMID: 26903851 Free PMC article.
-
Electrocortical amplification for emotionally arousing natural scenes: the contribution of luminance and chromatic visual channels.Biol Psychol. 2015 Mar;106:11-7. doi: 10.1016/j.biopsycho.2015.01.012. Epub 2015 Jan 29. Biol Psychol. 2015. PMID: 25640949 Free PMC article.
-
Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons.PLoS Comput Biol. 2016 Nov 11;12(11):e1005113. doi: 10.1371/journal.pcbi.1005113. eCollection 2016 Nov. PLoS Comput Biol. 2016. PMID: 27835647 Free PMC article.
-
Modern Machine Learning as a Benchmark for Fitting Neural Responses.Front Comput Neurosci. 2018 Jul 19;12:56. doi: 10.3389/fncom.2018.00056. eCollection 2018. Front Comput Neurosci. 2018. PMID: 30072887 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources