Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug 1;64(15):5048-50.
doi: 10.1158/0008-5472.CAN-04-1170.

Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas

Affiliations

Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas

Daniel K Broderick et al. Cancer Res. .

Abstract

The phosphatidylinositol 3'-kinase pathway is activated in multiple advanced cancers, including glioblastomas, through inactivation of the PTEN tumor suppressor gene. Recently, mutations in PIK3CA, a member of the family of phosphatidylinositol 3'-kinase catalytic subunits, were identified in a significant fraction (25-30%) of colorectal cancers, gastric cancers, and glioblastomas and in a smaller fraction of breast and lung cancers. These mutations were found to cluster into two major "hot spots" located in the helical and catalytic domains. To determine whether PIK3CA is genetically altered in brain tumors, we performed a large-scale mutational analysis of the helical and catalytic domains. A total of 13 mutations of PIK3CA within these specific domains were identified in anaplastic oligodendrogliomas, anaplastic astrocytomas, glioblastoma multiforme, and medulloblastomas, whereas no mutations were identified in ependymomas or low-grade astrocytomas. These observations implicate PIK3CA as an oncogene in a wider spectrum of adult and pediatric brain tumors and suggest that PIK3CA may be a useful diagnostic marker or a therapeutic target in these cancers.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

Substances