Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Aug;52(4):237-48.
doi: 10.1055/s-2004-817843.

Biological bypass in cardiovascular surgery

Affiliations
Review

Biological bypass in cardiovascular surgery

G Lutter et al. Thorac Cardiovasc Surg. 2004 Aug.

Abstract

Protein and gene therapy offer a tremendous opportunity to improve the care of critically ill patients with ischemic heart and peripheral artery occlusion disease. With the availability of purified growth factors such as vascular endothelial and fibroblast growth factors (FGF), several experimental and clinical studies provided data, that the growth of capillaries (angiogenesis) and of collateral arteries (arteriogenesis) is not limited to its natural time course. When applied in experimental models and in conjunction with coronary artery bypass operations, FGF in particular, led to a significant increase in endogenous rerouting of blood flow by collateral vessels inside the tissue itself. Thus, the proliferation of preexisting bypassing arterioles could be enhanced therapeutically (biological bypass). The purpose of this review is to discuss the physiological importance of different kinds of cytokines which are able to induce angio- and arteriogenesis in ischemic limbs or the heart. It is outlined that a combination of a sufficient amount of large arterioles and a capillary network are needed to compensate perfusion deficits. Each patient, who has an ischemic area and cannot be conventionally revascularized, is a potential candidate for the biological bypass.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources