Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain
- PMID: 15294778
- PMCID: PMC492381
- DOI: 10.1128/AEM.70.8.4499-4504.2004
Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain
Abstract
A new principle for expression of heat-sensitive recombinant proteins in Escherichia coli at temperatures close to 4 degrees C was experimentally evaluated. This principle was based on simultaneous expression of the target protein with chaperones (Cpn60 and Cpn10) from a psychrophilic bacterium, Oleispira antarctica RB8(T), that allow E. coli to grow at high rates at 4 degrees C (maximum growth rate, 0.28 h(-1)). The expression of a temperature-sensitive esterase in this host at 4 to 10 degrees C yielded enzyme specific activity that was 180-fold higher than the activity purified from the non-chaperonin-producing E. coli strain grown at 37 degrees C (32,380 versus 190 micromol min(-1) g(-1)). We present evidence that the increased specific activity was not due to the low growth temperature per se but was due to the fact that low temperature was beneficial to folding, with or without chaperones. This is the first report of successful use of a chaperone-based E. coli strain to express heat-labile recombinant proteins at temperatures below the theoretical minimum growth temperature of a common E. coli strain (7.5 degrees C).
Figures


References
-
- Amrein, K. E., B. Takacs, M. Steiger, J. Molnos, N. A. Flint, and P. Burn. 1995. Purification and characterization of recombinant human p50csk protein-tyrosine kinase from an Escherichia coli expression system overproducing the bacterial chaperones GroES and GroEL. Proc. Natl. Acad. Sci. USA 92:1048-1052. - PMC - PubMed
-
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. - PubMed
-
- Cavicchioli, R., K. S. Siddiqui, D. Andrews, and K. R. Sowers. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13:253-261. - PubMed
-
- Feller, G., and C. Gerday. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. 1:200-208. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous