Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;45(7):887-96.
doi: 10.1093/pcp/pch097.

Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage

Affiliations

Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage

Laury Chaerle et al. Plant Cell Physiol. 2004 Jul.

Abstract

Different biotic stresses yield specific symptoms, owing to their distinct influence on a plant's physiological status. To monitor early changes in a plant's physiological status upon pathogen attack, chlorophyll fluorescence imaging (Chl-FI) and thermography, which respectively visualize photosynthetic efficiency and transpiration, were carried out in parallel for two fundamentally different plant-pathogen interactions. These non-destructive imaging techniques were able to visualize infections at an early stage, before damage appeared. Under growth-room conditions, a robotized set-up captured time series of visual, thermal and chlorophyll fluorescence images from infected regions on attached leaves. As a first symptom of the plant-virus interaction between resistant tobacco and tobacco mosaic virus (TMV), thermal imaging detected a local rise in temperature while Chl-FI monitored a co-localized increase in fluorescence intensity. Chl-FI also revealed pre-symptomatic high-intensity spots for the plant-fungus system sugar beet-Cercospora beticola. Concomitantly, spots of lower temperature were monitored with thermography, in marked contrast with our observations on TMV-infection in tobacco. Knowledge of disease signatures for different plant-pathogen interactions could allow early identification of emerging biotic stresses in crops, facilitating the containment of disease outbreaks. Presymptomatic monitoring clearly opens perspectives for quantitative screening for disease resistance, either on excised leaf pieces or attached leaves.

PubMed Disclaimer

Publication types

MeSH terms