Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 1;38(13):3551-7.
doi: 10.1021/es0351793.

Persistent organic pollutants at the base of the Antarctic marine food web

Affiliations

Persistent organic pollutants at the base of the Antarctic marine food web

Amy L Chiuchiolo et al. Environ Sci Technol. .

Abstract

Various organochlorine pesticides and brominated diphenyl ethers (BDE-47, -99, and -100) were measured in sea ice algae, water column plankton, and juvenile and adult krill collected in the Palmer Long-Term Ecological Research (LTER) region west of the Antarctic Peninsula during late austral winter and midsummer, 2001-2002. BDEs were 100-1000 times higher in ice algae and 2-10 times higher in phytoplankton than the most abundant organochlorine pesticide, hexachlorobenzene (HCB), reflecting the current production and use of BDEs versus organochlorine pesticides. However, concentrations of HCB and BDEs were significantly lower in summer plankton than in ice algae indicating lower atmospheric inputs, removal from the water column, and/or biodilution of persistent organic pollutants at the base of the food web during summer. Concentrations of HCB (juvenile and adult krill) and BDEs (juvenile krill) were not significantly different from their primary food source (ice algae, phytoplankton), and BDEs were significantly lower in adult krill versus phytoplankton, indicating no biomagnification of HCB or BDEs during transfer from plankton to krill. The high concentrations of BDEs and HCB in ice algae and associated juvenile krill illustrate the importance of sea ice as a vector for entry of POPs into the Antarctic marine ecosystem.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources