Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2004 Aug;45(8):1293-8.

Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas

Affiliations
  • PMID: 15299051
Free article
Clinical Trial

Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas

Benoit Pirotte et al. J Nucl Med. 2004 Aug.
Free article

Abstract

We compared the contributions of the labeled tracers (11)C-methionine (Met) and (18)F-FDG for PET-guided stereotactic biopsy of brain gliomas.

Methods: In 32 patients with glioma, stereotactic Met PET and (18)F-FDG PET were integrated in the planning of stereotactic brain biopsy. PET images were analyzed to determine which tracer offered the best information for target definition. The stereotactic coregistration of PET images allowed accurate comparison of the level, distribution, and extent of uptake for both tracers according to tumor location and grade.

Results: A histologic diagnosis was obtained for all patients. All gliomas had an area of abnormal Met uptake, and 27 showed abnormal (18)F-FDG uptake. (18)F-FDG was used for target selection when its uptake was higher in tumor than in gray matter (14 gliomas). Seven were in the basal ganglia or brain stem. Met was used for target selection when there was no (18)F-FDG uptake or when (18)F-FDG uptake was equivalent to that in the gray matter (18 gliomas). Thirteen were in the cortex. Sixty-one of the 70 stereotactic trajectories obtained from the 32 patients were based on PET-defined targets and had an area of abnormal Met uptake. These 61 Met-positive trajectories always yielded a diagnosis of tumor. All nondiagnostic trajectories (n = 9) were obtained in areas with no increased uptake of Met. In all patients with increased uptake of both tracers, the focus of highest Met uptake corresponded to the focus of highest (18)F-FDG uptake. However, the extent of uptake of both tracers was variable.

Conclusion: Distributions of highest Met and (18)F-FDG uptake are similar in brain gliomas. Because Met provides a more sensitive signal, it is the molecule of choice for single-tracer PET-guided neurosurgical procedures in gliomas.

PubMed Disclaimer

MeSH terms

LinkOut - more resources