Determining phases and anomalous-scattering models from the multiwavelength anomalous diffraction of native protein metal clusters. improved MAD phase error estimates and anomalous-scatterer positions
- PMID: 15299969
- DOI: 10.1107/S0907444996007263
Determining phases and anomalous-scattering models from the multiwavelength anomalous diffraction of native protein metal clusters. improved MAD phase error estimates and anomalous-scatterer positions
Abstract
A strategy is presented for refining anomalous scattering models and calculating protein phases directly from the Bijvoet and dispersive differences of a macromolecular multiwavelength anomalous diffraction (MAD) experiment. This procedure, incorporated in the program MADPHSREF, is especially amenable for exploiting the weak perturbations to normal scattering produced by inner-shell electronic transitions of asymmetric metal and protein ligand assemblies. The protocol accounts for more than one type of anomalous scatterer, incorporates stereochemical restraints, treats the data in local scaling groups, and partly compensates for correlated errors. Approximating maximum likelihood by averaging observation variances and covariances over all values of phase considerably improved error estimation. Probabilistic rejection of aberrant observations, re-evaluated before each refinement cycle, improved refinement convergence and accuracy compared with other less flexible rejection criteria. MADPHSREF allows the facile combination of MAD phase information with phase information from other sources. For the suifite reductase hemoprotein (SiRHP), relative weights for MAD and multiple isomorphous replacement (MIR) phases were determined by matching histograms of electron density. Accurate metal-cluster geometries and the associated errors in atomic positions can be determined from refinement against anomalous differences using normal scattering phases from a refined structure. When applied to MAD data collected on SiRHP, these methods confirmed the Fe(4)S(4) cluster asymmetry initially observed in the refined 1.6 A resolution structure and resulted in a MAD-phased, experimental, electron-density map that is of better quality than the combined MAD/MIR map originally used to determine the structure.
Similar articles
-
Multiwavelength anomalous diffraction of sulfite reductase hemoprotein: making the most of MAD data.Acta Crystallogr D Biol Crystallogr. 1997 Jan 1;53(Pt 1):8-22. doi: 10.1107/S0907444996007251. Acta Crystallogr D Biol Crystallogr. 1997. PMID: 15299968
-
Crystallographic structure analysis of lamprey hemoglobin from anomalous dispersion of synchrotron radiation.Proteins. 1988;4(2):77-88. doi: 10.1002/prot.340040202. Proteins. 1988. PMID: 3227016
-
MAD phasing: treatment of dispersive differences as isomorphous replacement information.Acta Crystallogr D Biol Crystallogr. 1994 Jan 1;50(Pt 1):17-23. doi: 10.1107/S0907444993008236. Acta Crystallogr D Biol Crystallogr. 1994. PMID: 15299472
-
ACORN: a review.Acta Crystallogr D Biol Crystallogr. 2006 Aug;62(Pt 8):901-8. doi: 10.1107/S0907444906008122. Epub 2006 Jul 18. Acta Crystallogr D Biol Crystallogr. 2006. PMID: 16855307 Review.
-
Metal compounds as tools for the construction and the interpretation of medium-resolution maps of ribosomal particles.J Struct Biol. 1999 Sep;127(2):141-51. doi: 10.1006/jsbi.1999.4135. J Struct Biol. 1999. PMID: 10527903 Review.
Cited by
-
The crystal structure of yeast copper thionein: the solution of a long-lasting enigma.Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):51-6. doi: 10.1073/pnas.0408254101. Epub 2004 Dec 21. Proc Natl Acad Sci U S A. 2005. PMID: 15613489 Free PMC article.
-
Electron tunneling in protein crystals.Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5002-6. doi: 10.1073/pnas.081072898. Epub 2001 Apr 10. Proc Natl Acad Sci U S A. 2001. PMID: 11296248 Free PMC article.