Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug;25(15):2602-10.
doi: 10.1002/elps.200406016.

Detection of mitochondrial DNA mutations using temporal temperature gradient gel electrophoresis

Affiliations

Detection of mitochondrial DNA mutations using temporal temperature gradient gel electrophoresis

Lee-Jun C Wong et al. Electrophoresis. 2004 Aug.

Abstract

Mitochondrial disorders are a group of clinically and genetically heterogeneous diseases. Common recurrent mitochondrial DNA (mtDNA) point mutations account for the molecular defects of a small proportion of patients. In order to identify mtDNA mutations, comprehensive mutational analysis of the entire mitochondrial genome is necessary. We developed the temporal temperature gradient gel electrophoresis (TTGE) method to screen for mutations in mtDNA. The entire mitochondrial genome was amplified using 32 pairs of overlapping primers followed by TTGE analysis of the DNA fragments. TTGE method was first validated on 200 DNA fragments containing known mutations or polymorphisms. On TTGE, homoplasmic nucleotide substitutions show a single band shift and heteroplasmic mutations show multiple banding patterns. The known mutations or polymorphisms were correctly identified. TTGE was then used to screen for unknown mutations in the mitochondrial genome. DNA banding patterns, deviated from wild-type, suggestive of either homoplasmic or heteroplasmic mutations, were followed by direct DNA sequencing to identify the mutations. Numerous mutations and polymorphisms were detected. The results demonstrated that TTGE detects and distinguishes heteroplasmic mutations from homoplasmic polymorphisms. It also detects heteroplasmic changes in the background of a homoplasmic polymorphism. Overall, TTGE was proven to be a simple, rapid, sensitive, and effective mutation detection method.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources