Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug 17;20(17):7097-102.
doi: 10.1021/la049329e.

Transition between superhydrophobic states on rough surfaces

Affiliations

Transition between superhydrophobic states on rough surfaces

Neelesh A Patankar. Langmuir. .

Abstract

Surface roughness is known to amplify hydrophobicity. It is observed that, in general, two drop shapes are possible on a given rough surface. These two cases correspond to the Wenzel (liquid wets the grooves of the rough surface) and Cassie (the drop sits on top of the peaks of the rough surface) formulas. Depending on the geometric parameters of the substrate, one of these two cases has lower energy. It is not guaranteed, though, that a drop will always exist in the lower energy state; rather, the state in which a drop will settle depends typically on how the drop is formed. In this paper, we investigate the transition of a drop from one state to another. In particular, we are interested in the transition of a "Cassie drop" to a "Wenzel drop", since it has implications on the design of superhydrophobic rough surfaces. We propose a methodology, based on energy balance, to determine whether a transition from the Cassie to Wenzel case is possible.

PubMed Disclaimer

LinkOut - more resources