Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Aug 23;127(1-2):89-95.
doi: 10.1016/j.molbrainres.2004.05.012.

Modulation of the Omi/HtrA2 signaling pathway after transient focal cerebral ischemia in mouse brains that overexpress SOD1

Affiliations
Comparative Study

Modulation of the Omi/HtrA2 signaling pathway after transient focal cerebral ischemia in mouse brains that overexpress SOD1

Atsushi Saito et al. Brain Res Mol Brain Res. .

Abstract

Omi/HtrA2 is a novel protein that contributes to the regulation of mitochondrial apoptosis after a variety of cell death stimuli in vitro and is thought to negatively control the inhibitor-of-apoptosis protein (IAP) family. However, the Omi/HtrA2 pathway remains unknown in apoptotic neuronal cell death in vivo. To examine the role of the Omi/HtrA2 pathway and its relationship to oxidative stress after reperfusion following cerebral ischemia, we used a transient focal cerebral ischemia (tFCI) model in copper/zinc-superoxide dismutase (SOD1) transgenic mice and wild-type mice. We evaluated the link between the Omi/HtrA2 pathway and the caspase cascade reaction after tFCI by administration of a pan-caspase inhibitor, Z-VAD-FMK. We observed the time-dependent expression of Omi/HtrA2 and its binding to X-chromosome-linked IAP (Omi/XIAP) by immunohistochemistry, Western blotting and coimmunoprecipitation. Translocation of Omi/HtrA2 into the cytosolic space was detected during the early period after tFCI and was not affected by Z-VAD-FMK administration, but it was prevented by SOD1 overexpression. Coimmunoprecipitation revealed that Omi/XIAP transiently increased and that it was prevented by SOD1 overexpression. These results suggest that the Omi/HtrA2 pathway may play an important role in the progress of apoptotic neuronal cell death and that overexpression of SOD1 may attenuate this apoptotic cell death by preventing the Omi/HtrA2 cell signaling pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources