Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Sep 1;63(4):653-61.
doi: 10.1016/j.cardiores.2004.05.010.

Occurrence of a tetrodotoxin-sensitive calcium current in rat ventricular myocytes after long-term myocardial infarction

Affiliations
Comparative Study

Occurrence of a tetrodotoxin-sensitive calcium current in rat ventricular myocytes after long-term myocardial infarction

Julio L Alvarez et al. Cardiovasc Res. .

Abstract

Objective: To determine the characteristics of a TTX-sensitive Ca(2+) current that occurred only following remodelling after myocardial infarction in Wistar rat.

Methods: Using the whole-cell patch-clamp technique, we studied ionic inward current in myocytes isolated from four different ventricular regions of control Wistar rat hearts, or from hearts 4 to 6 months after ligation of the left coronary artery. Inward current characteristics were also analysed in Xenopus laevis oocytes that heterologously expressed the human sodium channel alpha-subunit Nav1.5. The effects of oxidative stress by hydrogen peroxide or tert-butyl-hydroxyperoxide as well as those of PKA-dependent phosphorylation, which partly mimic the pathological conditions, were investigated on control cardiomyocytes and Nav1.5-expressing oocytes.

Results: In Na-free solution, a low-threshold, tetrodotoxin-sensitive inward current was found in 20 out of 78 cells isolated from 16 post-myocardial infarcted (PMI) cardiomyocytes but not in cardiomyocytes from young and sham rat hearts. This current exhibited kinetics and pharmacological properties similar to the I(Ca(TTX)) current previously reported. I(Ca(TTX))-like current was critically dependent on extracellular Na(+) and was reduced by micromolar Na(+) concentrations. Neither in normal rat cardiomyocytes nor in Nav1.5-expressing oocytes could a I(Ca(TTX))-like current be elicited in Na(+)-free extracellular solution, even after oxidative stress or PKA-dependent phosphorylation.

Conclusions: Our data suggest that I(Ca(TTX))-like current in PMI myocytes does not arise from classical Na(+) channels modified by oxidative stress or PKA phosphorylation and most probably represents a different Na(+) channel type re-expressed in some cells after remodelling.

PubMed Disclaimer

Publication types

LinkOut - more resources