Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Apr 15;362(1817):861-79.
doi: 10.1098/rsta.2003.1353.

Ultrafast near-field spectroscopy of single semiconductor quantum dots

Affiliations
Review

Ultrafast near-field spectroscopy of single semiconductor quantum dots

Christoph Lienau. Philos Trans A Math Phys Eng Sci. .

Abstract

Excitonic and spin excitations of single semiconductor quantum dots (QDs) currently attract attention as possible candidates for solid-state-based implementations of quantum logic devices. Due to their rather short decoherence times in the picosecond to nanosecond range, such implementations rely on using ultrafast optical pulses to probe and control coherent polarizations. We combine ultrafast spectroscopy and near-field microscopy to probe the nonlinear optical response of a single QD on a femtosecond time-scale. Transient reflectivity spectra show pronounced oscillations around the QD exciton line. These oscillations reflect phase-disturbing Coulomb interactions between the excitonic QD polarization and continuum excitations. The results show that although semiconductor QDs resemble in many respects atomic systems, Coulomb many-body interactions can contribute significantly to their optical nonlinearities on ultrashort time-scales.

PubMed Disclaimer

Publication types

LinkOut - more resources