Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep 15;60(4):481-9.
doi: 10.1002/neu.20050.

Background sodium current stabilizes bursting in respiratory pacemaker neurons

Affiliations

Background sodium current stabilizes bursting in respiratory pacemaker neurons

Andrew K Tryba et al. J Neurobiol. .

Abstract

Endogenous pacemaker properties have been proposed to generate rhythmic activity underlying many behaviors including respiration. For pacemakers to generate regenerative bursting, background currents maintain their membrane potential (Vm) within a range where bi-stable properties are expressed, thereby stabilizing rhythmogenesis. We previously found that the baseline Vm of respiratory pacemakers is stabilized against hyperpolarizing shifts in their Vm. In response to prolonged hyperpolarizing current injection synaptically isolated respiratory pacemakers steadily depolarize and resume bursting, suggesting a stabilizing background current is involved. What is the ionic basis of this background current in respiratory pacemakers? Here we demonstrate that in low-[Na(+)](o) ACSF, synaptically isolated respiratory pacemakers hyperpolarized and remained outside the bursting window, but could burst upon depolarizing current injection. These data suggest that pacemakers possess a background sodium current that is necessary to bring their Vm into a bursting range. Low-[Na(+)](o) ACSF also abolished the depolarizing shift evoked during prolonged hyperpolarizing current injection, and bursting did not resume. This depolarizing shift persisted in the presence of I(h)-current blockers, but was abolished in tetrodotoxin. Although, under control conditions, the Vm of synaptically isolated respiratory pacemaker neurons was not significantly affected when [K(+)](o) was changed from 3 to 8 mM, the Vm is altered when [K(+)](o) was raised in low-[Na(+)](o) ACSF. Thus, current-clamp studies suggest that respiratory pacemaker neurons possess a background sodium current that maintains their membrane potential within a range where they express bursting, thereby stabilizing rhythmogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources