Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;31(6):587-94.
doi: 10.1165/rcmb.2004-0003OC. Epub 2004 Aug 12.

Accumulation of inhibitory kappaB-alpha as a mechanism contributing to the anti-inflammatory effects of surfactant protein-A

Affiliations

Accumulation of inhibitory kappaB-alpha as a mechanism contributing to the anti-inflammatory effects of surfactant protein-A

Yingda Wu et al. Am J Respir Cell Mol Biol. 2004 Dec.

Abstract

The collectin surfactant protein (SP)-A has been implicated in multiple immunoregulatory functions of innate pulmonary host defense via modulating immune responses both in vitro and in vivo. The aim of the present study was to investigate mechanisms responsible for the anti-inflammatory effects of human (hu) SP-A on the inhibitory kappaB (IkappaB)/nuclear factor (NF)-kappaB signaling pathway in alveolar macrophages (AMs). Initial CD25 expression analysis by flow cytometry of CD14/hu Toll-like receptor 4-transfected Chinese hamster ovary reporter cells demonstrated that SP-A alone does not induce any NF-kappaB-dependent CD25 expression in these cells. In AMs, SP-A pretreatment caused a marked inhibition of lipopolysaccharide (LPS)-induced NF-kappaB activation independent of the LPS chemotype used as determined by electrophoretic mobility shift assay. Western blot analysis revealed that SP-A by itself increased the protein expression of IkappaB-alpha, the predominant regulator for rapidly induced NF-kappaB, in a dose- and time-dependent manner without enhancing IkappaB-alpha messenger RNA as determined by reverse transcription-polymerase chain reaction. SP-A did not interfere with LPS-induced serine(32) phosphorylation of IkappaB-alpha but significantly enhanced IkappaB-alpha abundance under LPS-coupled conditions. The data suggest that anti-inflammatory effects of SP-A on LPS-challenged AMs are associated with a SP-A-mediated direct modulation of the IkappaB-alpha turnover in these cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources