Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jan 1;21(1):10-9.
doi: 10.1093/bioinformatics/bth466. Epub 2004 Aug 12.

Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes

Affiliations
Comparative Study

Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes

Kuo-Chen Chou. Bioinformatics. .

Abstract

Motivation: With protein sequences entering into databanks at an explosive pace, the early determination of the family or subfamily class for a newly found enzyme molecule becomes important because this is directly related to the detailed information about which specific target it acts on, as well as to its catalytic process and biological function. Unfortunately, it is both time-consuming and costly to do so by experiments alone. In a previous study, the covariant-discriminant algorithm was introduced to identify the 16 subfamily classes of oxidoreductases. Although the results were quite encouraging, the entire prediction process was based on the amino acid composition alone without including any sequence-order information. Therefore, it is worthy of further investigation.

Results: To incorporate the sequence-order effects into the predictor, the 'amphiphilic pseudo amino acid composition' is introduced to represent the statistical sample of a protein. The novel representation contains 20 + 2lambda discrete numbers: the first 20 numbers are the components of the conventional amino acid composition; the next 2lambda numbers are a set of correlation factors that reflect different hydrophobicity and hydrophilicity distribution patterns along a protein chain. Based on such a concept and formulation scheme, a new predictor is developed. It is shown by the self-consistency test, jackknife test and independent dataset tests that the success rates obtained by the new predictor are all significantly higher than those by the previous predictors. The significant enhancement in success rates also implies that the distribution of hydrophobicity and hydrophilicity of the amino acid residues along a protein chain plays a very important role to its structure and function.

PubMed Disclaimer

LinkOut - more resources