Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct 15;279(42):44030-8.
doi: 10.1074/jbc.M408285200. Epub 2004 Aug 11.

Vascular endothelial growth factor-mediated induction of manganese superoxide dismutase occurs through redox-dependent regulation of forkhead and IkappaB/NF-kappaB

Affiliations
Free article

Vascular endothelial growth factor-mediated induction of manganese superoxide dismutase occurs through redox-dependent regulation of forkhead and IkappaB/NF-kappaB

Md Ruhul Abid et al. J Biol Chem. .
Free article

Abstract

The mitochondrial antioxidant manganese superoxide dismutase (Mn-SOD) plays a critical cytoprotective role against oxidative stress. Vascular endothelial growth factor (VEGF) was shown previously to induce expression of Mn-SOD in endothelial cells by a NADPH oxidase-dependent mechanism. The goal of the current study was to determine the transcriptional mechanisms underlying this phenomenon. VEGF resulted in protein kinase C-dependent phosphorylation of IkappaB and subsequent translocation of p65 NF-kappaB into the nucleus. Overexpression of constitutively active IkappaB blocked VEGF stimulation of Mn-SOD. In transient transfection assays, VEGF increased Mn-SOD promoter activity, an effect that was dependent on a second intronic NF-kappaB consensus motif. In contrast, VEGF-mediated induction of Mn-SOD was enhanced by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and by dominant negative Akt and was decreased by constitutively active Akt. Overexpression of a constitutively active (phosphorylation-resistant) form of FKHRL1 (TMFKHRL1) resulted in increased Mn-SOD expression, suggesting that the negative effect of PI3K-Akt involves attenuation of forkhead activity. In co-transfection assays, the Mn-SOD promoter was transactivated by TMFKHRL1. Flavoenzyme inhibitor, diphenyleneiodonium (DPI), and antisense oligonucleotides against p47phox (AS-p47phox) inhibited VEGF stimulation of IkappaB/NF-kappaB and forkhead phosphorylation, supporting a role for NADPH oxidase activity in both signaling pathways. Like VEGF, hepatocyte growth factor (HGF) activated the PI3K-Akt-forkhead pathway. However, HGF-PI3K-Akt-forkhead signaling was insensitive to diphenyleneiodonium and AS-p47phox. Moreover, HGF failed to induce phosphorylation of IkappaB/NF-kappaB or nuclear translocation of NF-kappaB and had no effect on Mn-SOD expression. Together, these data suggest that VEGF is uniquely coupled to Mn-SOD expression through growth factor-specific reactive oxygen species (ROS)-sensitive positive (protein kinase C-NF-kappaB) and negative (PI3K-Akt-forkhead) signaling pathways.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources