Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan 15;267(2):1204-11.

Differential expression within a three-gene subfamily encoding a plasma membrane H(+)-ATPase in Nicotiana plumbaginifolia

Affiliations
  • PMID: 1530935
Free article

Differential expression within a three-gene subfamily encoding a plasma membrane H(+)-ATPase in Nicotiana plumbaginifolia

C Perez et al. J Biol Chem. .
Free article

Abstract

Genomic and cDNA clones for the three members of a gene subfamily (pma) encoding a plasma membrane H(+)-translocating ATPase in Nicotiana plumbaginifolia were isolated and sequenced. They are between 95 and 96% identical at the deduced amino acid sequence level. Sequence comparisons with the corresponding tomato genes (Ewing, N.N., Wimmers, L.E., Meyer, D.J., Chetelat, R.T., and Bennett, A.B. (1990) Plant Physiol. 94, 1874-1881) indicate that divergence among the three N. plumbaginifolia pma genes occurred before the development of the Solanaceae family. Here, determination of pma1 transcription initiation sites reveals several 5' boundaries located 266 to 120 nucleotides upstream from the plasma membrane H(+)-ATPase translation initiation codon. The 5'-untranslated region contains a small open reading frame, 9 residues long. pma3 has a single, 264-nucleotide long 5' leader containing a 5-residue open reading frame. The latter is completely conserved in a corresponding tomato gene. These features suggest the possibility of translational regulation of plant pma genes. S1 nuclease protection assays on total cellular RNA isolated from different organs reveals that all three genes are expressed in leaf, stem, flower, and root tissues, albeit at different levels according to the organ and gene. The different genes for the plant H(+)-translocating ATPase are thus subject to differential regulation of transcription, possibly related to specific aspects of enzyme function.

PubMed Disclaimer

Publication types

LinkOut - more resources