Distinct domains of an oligotopic membrane protein are Sec-dependent and Sec-independent for membrane insertion
- PMID: 1530939
Distinct domains of an oligotopic membrane protein are Sec-dependent and Sec-independent for membrane insertion
Abstract
Leader peptidase of Escherichia coli spans the plasma membrane twice with its amino terminus on the periplasmic surface of the membrane and its large carboxyl-terminal domain protruding into the periplasm. To monitor the transfer of the amino terminus of leader peptidase to the periplasm, we have constructed a fusion protein between the 18-residue amino-terminal periplasmic domain of Pf3 bacteriophage coat protein and the beginning of leader peptidase. We find that neither the SecA or SecY proteins nor a transmembrane electrochemical potential is required for insertion of the amino terminus, while the transfer of the carboxyl-terminal domain of leader peptidase has these requirements. The first 35 residues of leader peptidase, which include the first hydrophobic domain and the carboxyl-terminal positively charged cluster, are sufficient to insert the amino terminus. When positively charged residues are introduced before the first transmembrane segment, translocation of the amino terminus is abolished. These studies in protein membrane topogenesis, showing that there are different requirements for amino and carboxyl termini insertion, indicate that multiple mechanisms exist even within the same protein.
Similar articles
-
The translocation of negatively charged residues across the membrane is driven by the electrochemical potential: evidence for an electrophoresis-like membrane transfer mechanism.EMBO J. 1995 Mar 1;14(5):866-75. doi: 10.1002/j.1460-2075.1995.tb07068.x. EMBO J. 1995. PMID: 7889937 Free PMC article.
-
Translocation of N-terminal tails across the plasma membrane.EMBO J. 1994 Oct 3;13(19):4662-9. doi: 10.1002/j.1460-2075.1994.tb06789.x. EMBO J. 1994. PMID: 7925307 Free PMC article.
-
Translocation of conjugated presecretory proteins possessing an internal non-peptide domain into everted membrane vesicles in Escherichia coli.J Biol Chem. 1993 Feb 15;268(5):3586-93. J Biol Chem. 1993. PMID: 8429035
-
Leader peptidase.Mol Microbiol. 1991 Dec;5(12):2855-60. doi: 10.1111/j.1365-2958.1991.tb01844.x. Mol Microbiol. 1991. PMID: 1809829 Review.
-
Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane.Prog Nucleic Acid Res Mol Biol. 2001;66:107-57. doi: 10.1016/s0079-6603(00)66028-2. Prog Nucleic Acid Res Mol Biol. 2001. PMID: 11051763 Review.
Cited by
-
Early encounters of a nascent membrane protein: specificity and timing of contacts inside and outside the ribosome.J Cell Biol. 2005 Jul 4;170(1):27-35. doi: 10.1083/jcb.200503035. Epub 2005 Jun 27. J Cell Biol. 2005. PMID: 15983062 Free PMC article.
-
Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli.Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14646-51. doi: 10.1073/pnas.95.25.14646. Proc Natl Acad Sci U S A. 1998. PMID: 9843943 Free PMC article.
-
Mechanism and hydrophobic forces driving membrane protein insertion of subunit II of cytochrome bo 3 oxidase.J Mol Biol. 2008 Feb 1;375(5):1282-92. doi: 10.1016/j.jmb.2007.11.054. Epub 2007 Nov 22. J Mol Biol. 2008. PMID: 18155041 Free PMC article.
-
Cysteine residues in the transmembrane regions of M13 procoat protein suggest that oligomeric coat proteins assemble onto phage progeny.J Bacteriol. 2007 Apr;189(7):2897-905. doi: 10.1128/JB.01551-06. Epub 2007 Jan 19. J Bacteriol. 2007. PMID: 17237167 Free PMC article.
-
The complete general secretory pathway in gram-negative bacteria.Microbiol Rev. 1993 Mar;57(1):50-108. doi: 10.1128/mr.57.1.50-108.1993. Microbiol Rev. 1993. PMID: 8096622 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources