Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jul;6(1):48-57.
doi: 10.3816/CLC.2004.n.021.

Angiogenesis inhibitors: a rational strategy for radiosensitization in the treatment of non-small-cell lung cancer?

Affiliations
Review

Angiogenesis inhibitors: a rational strategy for radiosensitization in the treatment of non-small-cell lung cancer?

David Raben et al. Clin Lung Cancer. 2004 Jul.

Abstract

Angiogenesis is a precondition to invasion and metastasis for all solid tumors. Vascular endothelial growth factor (VEGF) and its family of receptors (VEGFR) play a critical role in cancer progression by promoting new blood vessel formation. Overexpression of VEGF and VEGFR has been correlated with poor prognosis in a variety of malignancies. In this era of targeted therapies for cancer, inhibiting angiogenesis through antiangiogenic and/or vascular targeting agents seems logical. Disturbing the angiogenesis process is an alternative or complementary strategy to inhibition of growth factor signaling. Blocking angiogenesis may enhance conventional anticancer treatments such as radiation therapy in situations where tumors are unresponsive to current antigrowth factor efforts. Compounds currently under investigation in cancer therapy include anti-VEGF/VEGFR antibodies, small molecule VEGFR tyrosine kinase inhibitors, antisense suppression of VEGF, immunotherapy, viral-directed targeting of VEGFR signaling, ribozymes, and various toxin conjugates. Preclinical investigations are exploring the benefits of combining angiogenic inhibitors with radiation. This article will provide an overview of these preclinical studies and the rationale for this therapeutic strategy in the treatment of non-small-cell lung cancer.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances