Derivation of midbrain dopamine neurons from human embryonic stem cells
- PMID: 15310843
- PMCID: PMC515094
- DOI: 10.1073/pnas.0404700101
Derivation of midbrain dopamine neurons from human embryonic stem cells
Abstract
Human embryonic stem (hES) cells are defined by their extensive self-renewal capacity and their potential to differentiate into any cell type of the human body. The challenge in using hES cells for developmental biology and regenerative medicine has been to direct the wide differentiation potential toward the derivation of a specific cell fate. Within the nervous system, hES cells have been shown to differentiate in vitro into neural progenitor cells, neurons, and astrocytes. However, to our knowledge, the selective derivation of any given neuron subtype has not yet been demonstrated. Here, we describe conditions to direct hES cells into neurons of midbrain dopaminergic identity. Neuroectodermal differentiation was triggered on stromal feeder cells followed by regional specification by means of the sequential application of defined patterning molecules that direct in vivo midbrain development. Progression toward a midbrain dopamine (DA) neuron fate was monitored by the sequential expression of key transcription factors, including Pax2, Pax5, and engrailed-1 (En1), measurements of DA release, the presence of tetrodotoxin-sensitive action potentials, and the electron-microscopic visualization of tyrosinehydroxylase-positive synaptic terminals. High-yield DA neuron derivation was confirmed from three independent hES and two monkey embryonic stem cell lines. The availability of unlimited numbers of midbrain DA neurons is a first step toward exploring the potential of hES cells in preclinical models of Parkinson's disease. This experimental system also provides a powerful tool to probe the molecular mechanisms that control the development and function of human midbrain DA neurons.
Figures





Similar articles
-
In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons.J Neurochem. 2005 Mar;92(5):1265-76. doi: 10.1111/j.1471-4159.2004.03006.x. J Neurochem. 2005. PMID: 15715675
-
Differentiation of dopaminergic neurons from human embryonic stem cells: modulation of differentiation by FGF-20.J Biosci Bioeng. 2009 Apr;107(4):447-54. doi: 10.1016/j.jbiosc.2008.12.013. J Biosci Bioeng. 2009. PMID: 19332307
-
Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells.Nat Biotechnol. 2000 Jun;18(6):675-9. doi: 10.1038/76536. Nat Biotechnol. 2000. PMID: 10835609
-
Derivation of dopaminergic neurons from pluripotent stem cells.Prog Brain Res. 2012;200:243-63. doi: 10.1016/B978-0-444-59575-1.00011-9. Prog Brain Res. 2012. PMID: 23195422 Review.
-
Regenerative medicine in Parkinson's disease: generation of mesencephalic dopaminergic cells from embryonic stem cells.Curr Opin Biotechnol. 2005 Oct;16(5):487-92. doi: 10.1016/j.copbio.2005.08.005. Curr Opin Biotechnol. 2005. PMID: 16143504 Review.
Cited by
-
Selective lentiviral gene delivery to CD133-expressing human glioblastoma stem cells.PLoS One. 2014 Dec 26;9(12):e116114. doi: 10.1371/journal.pone.0116114. eCollection 2014. PLoS One. 2014. PMID: 25541984 Free PMC article.
-
In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells.Neuron. 2016 Aug 17;91(4):728-738. doi: 10.1016/j.neuron.2016.08.004. Neuron. 2016. PMID: 27537482 Free PMC article. Review.
-
Mesenchymal stem cell-based therapy.Mol Pharm. 2013 Jan 7;10(1):77-89. doi: 10.1021/mp3005148. Epub 2012 Dec 24. Mol Pharm. 2013. PMID: 23215004 Free PMC article. Review.
-
Parkinson's disease and mesenchymal stem cells: potential for cell-based therapy.Parkinsons Dis. 2012;2012:873706. doi: 10.1155/2012/873706. Epub 2012 Feb 28. Parkinsons Dis. 2012. PMID: 22530164 Free PMC article.
-
Highly pure and expandable PSA-NCAM-positive neural precursors from human ESC and iPSC-derived neural rosettes.PLoS One. 2012;7(7):e39715. doi: 10.1371/journal.pone.0039715. Epub 2012 Jul 20. PLoS One. 2012. PMID: 22911689 Free PMC article.
References
-
- Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S. & Jones, J. M. (1998) Science 282, 1145–1147. - PubMed
-
- Lee, S.-H., Lumelsky, N., Studer, L., Auerbach, J. M. & McKay, R. D. G. (2000) Nat. Biotechnol. 18, 675–679. - PubMed
-
- Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakanishi, S., Nishikawa, S. I. & Sasai, Y. (2000) Neuron 28, 31–40. - PubMed
-
- Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. (2002) Cell 110, 385–397. - PubMed
-
- Brustle, O., Jones, K. N., Learish, R. D., Karram, K., Choudhary, K., Wiestler, O. D., Duncan, I. D. & McKay, R. G. (1999) Science 285, 754–756. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical