Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Sep;68(2):75-103.
doi: 10.1016/j.mvr.2004.06.001.

Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension

Affiliations
Review

Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension

Mehran Mandegar et al. Microvasc Res. 2004 Sep.

Abstract

Pulmonary artery vasoconstriction and vascular remodeling greatly contribute to a sustained elevation of pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP) in patients with pulmonary arterial hypertension (PAH). The development of PAH involves a complex and heterogeneous constellation of multiple genetic, molecular, and humoral abnormalities, which interact in a complicated manner, presenting a final manifestation of vascular remodeling in which fibroblasts, smooth muscle and endothelial cells, and platelets all play a role. Vascular remodeling is characterized largely by medial hypertrophy due to enhanced vascular smooth muscle cell proliferation or attenuated apoptosis and to endothelial cell over-proliferation, which can result in lumen obliteration. In addition to other factors, cytoplasmic Ca2+ in particular seems to play a central role as it is involved in both the generation of force through its effects on the contractile machinery, and the initiation and propagation of cell proliferation via its effects on transcription factors, mitogens, and cell cycle components. This review focuses on the role played by cellular factors, circulating factors, and genetic molecular signaling factors that promote a proliferative, antiapoptotic, and vasoconstrictive physiological milieu leading to vascular remodeling.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources