Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Sep 10;322(1):1-8.
doi: 10.1016/j.bbrc.2004.07.074.

Mouse spermine oxidase: a model of the catalytic cycle and its inhibition by N,N1-bis(2,3-butadienyl)-1,4-butanediamine

Affiliations
Comparative Study

Mouse spermine oxidase: a model of the catalytic cycle and its inhibition by N,N1-bis(2,3-butadienyl)-1,4-butanediamine

Andrea Bellelli et al. Biochem Biophys Res Commun. .

Abstract

Spermine oxidase (SMO) is a recently described flavoenzyme belonging to the class of polyamine oxidases (PAOs) and participating in the polyamine metabolism in animal cells. In this paper we describe the expression, purification, and characterization of the catalytic properties of a recombinant mouse SMO (mSMO). The purified enzyme has absorbance peaks at 457nm (epsilon=11mM(-1)cm(-1)) and 378nm, shows a molecular mass of approximately 63kDa, and has K(m) and k(cat) values of 170microM and 4.8s(-1), using spermine as substrate; it is unable to oxidize other free or acetylated polyamines. The mechanism-based PAO inhibitor N,N(1)-bis(2,3-butadienyl)-1,4-butanediamine (MDL72,527) acts as a competitive inhibitor of mSMO, with an apparent dissociation constant K(i)=63microM. If incubated for longer times, MDL72,527 yields irreversible inhibition of the enzyme with a half-life of 15min at 100microM MDL72,527. The mMSO catalytic mechanism, investigated by stopped flow, is consistent with a simple four-step kinetic scheme.

PubMed Disclaimer

MeSH terms

LinkOut - more resources