Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Aug 18;96(16):1219-30.
doi: 10.1093/jnci/djh230.

Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis

Affiliations

Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis

Evgeny Edovitsky et al. J Natl Cancer Inst. .

Abstract

Background: Heparanase is an endoglycosidase that degrades heparan sulfate, the main polysaccharide constituent of the extracellular matrix and basement membrane. Expression of the heparanase gene is associated with the invasive, angiogenic, and metastatic potential of diverse malignant tumors and cell lines. We used gene-silencing strategies to evaluate the role of heparanase in malignancy and to explore the therapeutic potential of its specific targeting.

Methods: We designed plasmid vectors to express hammerhead ribozymes or small interfering RNAs (siRNAs) directed against the human or mouse heparanase mRNAs. Human breast carcinoma (MDA-MB-435) and mouse lymphoma (Eb) and melanoma (B16-BL6) tumor cell lines, which have naturally high levels of endogenous heparanase or have been genetically engineered to overexpress heparanase, were transfected with anti-heparanase ribozyme or siRNA. Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and measurements of enzymatic activity were used to confirm the efficient silencing of heparanase gene expression. Cells transfected with the anti-heparanase ribozyme and siRNA vectors were tested for invasiveness in vitro and metastatic dissemination in animal models of experimental and spontaneous metastasis.

Results: Compared with cells transfected with control constructs, cells transfected with the anti-heparanase ribozyme or siRNA vectors had profoundly reduced invasion and adhesion in vitro, regardless of cell type, and expressed less heparanase. In vivo, tumors produced by cells transfected with the anti-heparanase ribozyme and siRNA vectors were less vascularized and less metastatic than tumors produced by cells transfected with the control vectors. Mice injected with cells transfected with the anti-heparanase ribozyme and siRNA vectors lived longer than mice injected with control cells.

Conclusions: The association of reduced levels of heparanase and altered tumorigenic properties in cells with anti-heparanase ribozyme- or siRNA-mediated gene-silencing vectors suggests that heparanase is important in cancer progression. Heparanase gene silencing has potential use as a target for anticancer drug development.

PubMed Disclaimer

Comment in

Publication types

MeSH terms