Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Feb;22(2):373-9.
doi: 10.1002/eji.1830220213.

A single autosomal gene defect severely limits IgG but not IgM responses in B lymphocyte-deficient A/WySnJ mice

Affiliations

A single autosomal gene defect severely limits IgG but not IgM responses in B lymphocyte-deficient A/WySnJ mice

D J Miller et al. Eur J Immunol. 1992 Feb.

Abstract

Antigen-stimulated B lymphocytes either differentiate into IgM-secreting plasma cells or into memory B cells that secrete other immunoglobulin isotypes upon antigen restimulation. The mechanisms that generate and maintain memory B cells are poorly understood. Previously, we described a severe B lymphocyte deficiency in adult strain A/WySnJ mice compared to subline A/J. Here we show that the single, autosomal co-dominant locus responsible for the deficiency also diminishes IgG-secreting B cell formation without interfering with IgM-secreting plasma cell differentiation. A/WySnJ secondary IgG1 responses to the protein antigens hemocyanin, bovine gamma-globulin, ovalbumin, lysozyme and beta-galactosidase were 6- to 50-fold lower than A/J responses. The defect also decreased secondary IgG2a and IgG3 responses, and primary IgG1 and IgG2a responses. The reduced A/WySnJ secondary IgG1 response was not due to differential response kinetics or dose responsiveness, and could not be augmented to A/J levels by repeated immunizations. Serum IgG1, IgG2a and IgG3 levels from nonimmune A/WySnJ mice were similarly reduced. The secondary IgG1 response and splenic B cell percentage showed significant positive correlation (r = 0.72) in F2 mice, suggesting that a single locus controlled both traits. In contrast, A/WySnJ mice made good primary IgM responses to hemocyanin, beta-galactosidase, and the thymus-independent antigen trinitrophenyl-Ficoll. The A/WySnJ splenic adherent cells were competent in antigen-presenting function, and A/WySnJ immune T cells proliferated in response to antigen and provided the requisite B cell stimulatory signals for an IgG1 response. Together, our results suggest that A/WySnJ mice have a genetic lesion that causes a selective IgG immune response dysfunction. The absence of IgG-secreting cell precursors or a defect in precursor activation or differentiation are two possible mechanisms which could precipitate a selective IgG response dysfunction. We propose that the defective A/WySnJ and normal A/J strain pair offer the opportunity to use a natural genetic variation as a tool to investigate B lymphocyte development and function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources