Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct 1;71(1):25-34.
doi: 10.1002/jbm.a.30117.

Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds

Affiliations

Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds

Lorenz Meinel et al. J Biomed Mater Res A. .

Abstract

Porous biodegradable silk scaffolds and human bone marrow derived mesenchymal stem cells (hMSCs) were used to engineer bone-like tissue in vitro. Two different scaffolds with the same microstructure were studied: collagen (to assess the effects of fast degradation) and silk with covalently bound RGD sequences (to assess the effects of enhanced cell attachment and slow degradation). The hMSCs were isolated, expanded in culture, characterized with respect to the expression of surface markers and ability for chondrogenic and osteogenic differentiation, seeded on scaffolds, and cultured for up to 4 weeks. Histological analysis and microcomputer tomography showed the development of up to 1.2-mm-long interconnected and organized bonelike trabeculae with cuboid cells on the silk-RGD scaffolds, features still present but to a lesser extent on silk scaffolds and absent on the collagen scaffolds. The X-ray diffraction pattern of the deposited bone corresponded to hydroxyapatite present in the native bone. Biochemical analysis showed increased mineralization on silk-RGD scaffolds compared with either silk or collagen scaffolds after 4 weeks. Expression of bone sialoprotein, osteopontin, and bone morphogenetic protein 2 was significantly higher for hMSCs cultured in osteogenic than control medium both after 2 and 4 weeks in culture. The results suggest that RGD-silk scaffolds are particularly suitable for autologous bone tissue engineering, presumably because of their stable macroporous structure, tailorable mechanical properties matching those of native bone, and slow degradation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources