Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2004 Aug 30;129A(2):144-8.
doi: 10.1002/ajmg.a.30222.

Spondyloperipheral dysplasia is caused by truncating mutations in the C-propeptide of COL2A1

Affiliations
Case Reports

Spondyloperipheral dysplasia is caused by truncating mutations in the C-propeptide of COL2A1

Andreas Zankl et al. Am J Med Genet A. .

Abstract

The term "spondyloperipheral dysplasia" (SPD) has been applied to the unusual combination of platyspondyly and brachydactyly as observed in a small number of individuals. The reported cases show wide clinical variability and the nosologic status and spectrum of this condition are still ill defined. Zabel et al. [1996: Am J Med Genet 63(1):123-128] reported an individual with short stature and SPD who was heterozygous for a frameshift mutation in the C-propeptide domain of COL2A1. To explain the additional finding of brachydactyly that is not an usual feature of the type II collagenopathies, it was postulated that the nature of the mutation induced precocious calcification and premature fusion of metacarpal and phalangeal growth plates. The C-propeptide of collagen II had previously been found to promote calcification ("chondrocalcin"). We have ascertained two further individuals with clinical and radiological findings of a type II collagenopathy in infancy who developed brachydactyly type E like changes of fingers and toes in childhood. In both individuals, heterozygosity for novel, distinct mutations in the C-propeptide coding region of COL2A1 were found. Although all three mutations (the one previously reported and the two novel ones) predict premature termination, their location close to the 3'-end of the mRNA probably protects them from nonsense-mediated decay and allows for synthesis of mutant procollagen chains. However, loss of crucial cysteine residues or other sequences essential for trimerization prevents these chains from associating and participating in procollagen helix formation, and thus leads to accumulation in the ER-consistent with EM findings. The mechanism leading to precocious fusion of phalangeal epiphyses remains to be explored. The consistency of clinical, radiographic, and molecular findings in these three unrelated individuals confirms SPD as a distinct nosologic entity. The diagnosis of SPD is suggested by the appearance of brachydactyly in a child who has clinical and radiographic features of a collagen II disorder.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources