Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Aug 18:4:14.
doi: 10.1186/1471-2229-4-14.

Validating internal controls for quantitative plant gene expression studies

Affiliations
Comparative Study

Validating internal controls for quantitative plant gene expression studies

Amy M Brunner et al. BMC Plant Biol. .

Abstract

Background: Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed.

Results: Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied.

Conclusion: Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Scatterplot of residuals after regression of tissue means from each experiment on overall mean for all genes. Genes were ordered based on absolute value of mean residuals (increasing from left to right).
Figure 2
Figure 2
Regression lines for several genes showing predicted regression lines and actual means over both experiments. The most stable and consistent control genes would have the lowest slope and closest fit to the regression line. UBQ (second from bottom) had the highest and TUA (top) the second highest stability indices in this experiment. CYP (third from bottom) had the lowest stability index. See Table 1 for descriptions of tissue samples.

Similar articles

Cited by

References

    1. Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol. 2002;29:23–39. - PubMed
    1. Charrier B, Champion A, Henry Y, Kreis M. Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol. 2002;130:577–90. doi: 10.1104/pp.009175. - DOI - PMC - PubMed
    1. Veistinen E, Liippo J, Lassila O. Quantification of human Aiolos splice variants by real-time PCR. J Immunol Methods. 2002;271:113–123. doi: 10.1016/S0022-1759(02)00370-8. - DOI - PubMed
    1. Chuaqui RF, Bonner RF, Best CJ, Gillespie JW, Flaig MJ, Hewitt SM, Phillips JL, Krizman DB, Tangrea MA, Ahram , Linehan WM, Knezevic V, Emmert-Buck MR. Post-analysis follow-up and validation of microarray experiments. Nat Genet. 2002;32:509–514. doi: 10.1038/ng1034. - DOI - PubMed
    1. Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods. 2001;25:386–401. doi: 10.1006/meth.2001.1261. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources