Refractive index distribution in the porcine eye lens for 532 nm and 633 nm light
- PMID: 15319785
- DOI: 10.1038/sj.eye.6701525
Refractive index distribution in the porcine eye lens for 532 nm and 633 nm light
Abstract
Aims: To measure the refractive index distribution in porcine eye lenses for two wavelengths from the visible spectrum: 532 and 633 nm, in order to determine whether there are any discernible wavelength dependent differences in the shape of the profile and in the magnitude of refractive index.
Methods: Rays were traced through 17 porcine lenses of the same age group and of similar size. Ray trace parameters were used to calculate the refractive index distributions for 633 nm light in all 17 lenses and for 532 nm light in 10 lenses. The effect of the refractive index at the edge of the lens, on the rest of the profile, was considered because the mismatch between refractive index at the lens edge and the refractive index of the surrounding gel necessitated a further step in calculations.
Results: The shape of the refractive index distributions is parabolic. There is a small wavelength dependent difference in the magnitude of the refractive index across the profile and this increases very slightly into the centre of the lens. The value of the refractive index at the edge of the lens does not appreciably affect the index profile.
Conclusions: The wavelength dependent differences in refractive index between light of 633 and 532 nm are small but discernible.
Similar articles
-
Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI).Vision Res. 2005 Aug;45(18):2352-66. doi: 10.1016/j.visres.2005.03.008. Epub 2005 Apr 22. Vision Res. 2005. PMID: 15979462
-
Measuring optical properties of an eye lens using magnetic resonance imaging.Magn Reson Imaging. 2004 Feb;22(2):211-20. doi: 10.1016/j.mri.2003.07.005. Magn Reson Imaging. 2004. PMID: 15010113
-
Changes in spherical aberration after lens refilling with a silicone oil.Invest Ophthalmol Vis Sci. 2007 Mar;48(3):1261-7. doi: 10.1167/iovs.06-0352. Invest Ophthalmol Vis Sci. 2007. PMID: 17325171
-
The role of the lens in refractive development of the eye: animal models of ametropia.Exp Eye Res. 2008 Jul;87(1):3-8. doi: 10.1016/j.exer.2008.03.001. Epub 2008 Mar 18. Exp Eye Res. 2008. PMID: 18405895 Review.
-
Optical plasticity in fish lenses.Prog Retin Eye Res. 2013 May;34:78-88. doi: 10.1016/j.preteyeres.2012.12.001. Epub 2012 Dec 20. Prog Retin Eye Res. 2013. PMID: 23262260 Review.
Cited by
-
Age-related changes in eye lens biomechanics, morphology, refractive index and transparency.Aging (Albany NY). 2019 Dec 16;11(24):12497-12531. doi: 10.18632/aging.102584. Epub 2019 Dec 16. Aging (Albany NY). 2019. PMID: 31844034 Free PMC article.
-
In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy.Biophys J. 2011 Sep 21;101(6):1539-45. doi: 10.1016/j.bpj.2011.08.008. Epub 2011 Sep 20. Biophys J. 2011. PMID: 21943436 Free PMC article.
-
Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens.Biomed Opt Express. 2011 Aug 1;2(8):2144-59. doi: 10.1364/BOE.2.002144. Epub 2011 Jul 5. Biomed Opt Express. 2011. PMID: 21833354 Free PMC article.
-
Optical properties of in situ eye lenses measured with X-ray Talbot interferometry: a novel measure of growth processes.PLoS One. 2011;6(9):e25140. doi: 10.1371/journal.pone.0025140. Epub 2011 Sep 20. PLoS One. 2011. PMID: 21949870 Free PMC article.
-
Patterns of crystallin distribution in porcine eye lenses.Mol Vis. 2008 Jul 4;14:1245-53. Mol Vis. 2008. PMID: 18615203 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources