Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004;4(12):1239-53.
doi: 10.2174/1568026043387836.

Inhibitors of 3C cysteine proteinases from Picornaviridae

Affiliations
Review

Inhibitors of 3C cysteine proteinases from Picornaviridae

Manjinder S Lall et al. Curr Top Med Chem. 2004.

Abstract

The Picornaviridae are among the smallest icosahedral positive-sense single stranded RNA containing viruses known, and comprise one of the largest and most important families of human and animal pathogens. The hepatitis A virus (HAV) and human rhinovirus (HRV) are important pathogens that belong to the picornavirus family. All picornaviruses have a 3C proteinase that processes an initially biosynthesized precursor protein and is crucial for viral maturation and replication. Although it is a cysteine proteinase, this 3C enzyme has a topology similar to those of the chymotrypsin-like serine proteinases. A series of inhibitors of HAV and HRV 3C proteinases were synthesized and tested as potential lead compounds for the design of therapeutic agents for human picornaviral pathogens. This research shows that thiol-reactive groups or "warheads" such as iodoacetamides, beta-lactones, Michael acceptors, ketones and pseudoxazolones can be used as effective tools to inhibit the HAV and HRV 3C proteinase enzymes. In addition, studies based on enzyme-inhibitor kinetics, mass spectrometry and NMR spectroscopy were effectively used to gain knowledge concerning enzyme-inhibitor mechanism of action and enzyme-inhibitor regiospecific reactivity.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources