Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;33(2):233-40.
doi: 10.1023/b:neur.0000030698.66675.90.

A light and electron microscopic study of betaine/GABA transporter distribution in the monkey cerebral neocortex and hippocampus

Affiliations

A light and electron microscopic study of betaine/GABA transporter distribution in the monkey cerebral neocortex and hippocampus

Xiao-Ming Zhu et al. J Neurocytol. 2004 Mar.

Abstract

The present study aimed to elucidate the distribution of betaine/gamma-aminobutyric acid (GABA) transporter-1 (BGT-1) in the normal monkey cerebral neocortex and hippocampus by immunoperoxidase and Immunogold labelling. BGT-1 was observed in pyramidal neurons in the cerebral neocortex and the CA fields of the hippocampus. Large numbers of small diameter dendrites or dendritic spines were observed in the neuropil. These made asymmetrical synaptic contacts with unlabelled axon terminals containing small round vesicles, characteristic of glutamatergic terminals. BGT-1 label was observed in an extra-perisynaptic region, away from the post-synaptic density. Immunoreactivity was not observed in portions of dendrites that formed symmetrical synapses, axon terminals, or glial cells. The distribution of BGT-1 on dendritic spines, rather than at GABAergic axon terminals, suggests that the transporter is unlikely to play a major role in terminating the action of GABA at a synapse. Instead, the osmolyte betaine is more likely to be the physiological substrate of BGT-1 in the brain, and the presence of the transporter in pyramidal neurons suggests that these neurons utilize betaine to maintain osmolarity.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources