Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Sep;10(9):966-73.
doi: 10.1038/nm1099. Epub 2004 Aug 22.

The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm

Affiliations
Free article
Comparative Study

The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm

Lei Zhao et al. Nat Med. 2004 Sep.
Free article

Abstract

Activation of the 5-lipoxygenase (5-LO) pathway leads to the biosynthesis of proinflammatory leukotriene lipid mediators. Genetic studies have associated 5-LO and its accessory protein, 5-LO-activating protein, with cardiovascular disease, myocardial infarction and stroke. Here we show that 5-LO-positive macrophages localize to the adventitia of diseased mouse and human arteries in areas of neoangiogenesis and that these cells constitute a main component of aortic aneurysms induced by an atherogenic diet containing cholate in mice deficient in apolipoprotein E. 5-LO deficiency markedly attenuates the formation of these aneurysms and is associated with reduced matrix metalloproteinase-2 activity and diminished plasma macrophage inflammatory protein-1alpha (MIP-1alpha; also called CCL3), but only minimally affects the formation of lipid-rich lesions. The leukotriene LTD(4) strongly stimulates expression of MIP-1alpha in macrophages and MIP-2 (also called CXCL2) in endothelial cells. These data link the 5-LO pathway to hyperlipidemia-dependent inflammation of the arterial wall and to pathogenesis of aortic aneurysms through a potential chemokine intermediary route.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances