Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Mar;262(3 Pt 1):C656-63.
doi: 10.1152/ajpcell.1992.262.3.C656.

Calcium oscillations in parotid acinar cells induced by microsomal Ca(2+)-ATPase inhibition

Affiliations

Calcium oscillations in parotid acinar cells induced by microsomal Ca(2+)-ATPase inhibition

J K Foskett et al. Am J Physiol. 1992 Mar.

Abstract

Previous studies have demonstrated in single rat parotid acinar cells that the microsomal Ca(2+)-ATPase inhibitor thapsigargin mobilizes Ca2+ specifically from the inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store, activates plasma membrane Ca2+ permeability, and induces intracellular Ca2+ concentration ([Ca2+]i) oscillations that are quite similar to those activated by carbachol. Nevertheless, the IP3-sensitive Ca2+ store remains continuously depleted during thapsigargin-induced oscillations, indicating that this pool is not involved in the oscillation mechanism. To determine the specificity of thapsigargin's effects, in the present study we have examined the effects on [Ca2+]i in single rat parotid acinar cells of two other microsomal Ca(2+)-ATPase inhibitors, cyclopiazonic acid (CPA) and 2,5-di-tert-butyl-1,4-benzohydroquinone (BHQ), and compared them with the effects of thapsigargin in the same cells. Our results demonstrate that thapsigargin, CPA, and BHQ all similarly deplete the IP3-sensitive Ca2+ store specifically, activate plasma membrane Ca2+ influx, and induce [Ca2+]i oscillations, strongly suggesting that these agents have a specific inhibitory action on microsomal Ca(2+)-ATPase activity. BHQ, in addition, inhibits plasma membrane Ca2+ influx. The data lend strong support to a model in which the state of Ca2+ filling of the IP3-sensitive store regulates plasma membrane Ca2+ influx. These results suggest either that a Ca2+ pump is involved which is insensitive to structurally dissimilar inhibitors or that a Ca2+ pump is not involved in refilling of the Ca2+ pool involved in [Ca2+]i oscillations in these cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources